
Abstract
This paper details the design, calibration, and validation methodology for a fault-
injection detection circuit that was first productized in Intel 12th gen Intel® Core™
processors. We will describe how fault-injection attacks can impact circuit timing,
the high-level design of the Tunable Replica Circuit (TRC), data gathering phase
that occurs in HVM (high volume manufacturing), the methodology to create a
calibration recipe, false positive testing, fault-injection testing and the final HVM
production calibration flow. Additionally, this paper will illustrate the feedback loop
where the circuit is tuned from data gathered from the false positive and attack-lab
testing.

1 Introduction
With the hardening of software (SW) vulnerabilities through the use of virtualization,
stack canaries, authenticating code before execution, etc., attackers have turned
their attention to physically attacking computing platforms. A favorite tool of these
attackers is fault injection attacks via glitching voltage, clock pins, EM [1-3] to cause
circuits to fail timing, resulting in the execution of malicious instructions, exfiltration
of secrets, etc.

Several techniques have been added to detect these attacks such as multi-bit
encoding of fuses, ECC on busses/fabrics/registers, hardware (HW) enforced
program execution control as well as other methods [4-6]. However, there is a need
to complement these mitigations with HW-based sensors that explicitly detect
circuit-based timing failures that occur as the result of an attack.

A crucial aspect for productizing such HW sensors is calibration. If the sensor is
calibrated too aggressively, it would detect normal workload voltage droops as false
positives. If false positives occur in the field the resulting platform instability may
lead to unnecessary recalls, a catastrophic event for Intel. While we prioritize the
elimination of false positives, we need to make sure all real fault-injection attacks
that will induce an internal error are detected. Minimizing the false negatives,
successful fault events is also very important. To mitigate false positives, we
developed a feedback-based calibration flow. This feedback loop uses results from
false positive and false negative testing along with margin data from the HW sensor
that indicates how close the sensor was to detecting a glitch.

The TRC was developed to detect dynamic variation (voltage droop, temperature,
aging) in circuits [7-8], which the TRC detects as timing violations. Since the TRC
can be calibrated to a point where such timing violations could only be the result of
an attack, we chose the TRC as the HW sensor to mitigate fault-injection attacks in
Intel security processors and calibrated it using the process described above.

Starting with the Intel 12th gen Intel Core processor, we have successfully integrated,
characterized and validated the TRC into the Intel® Converged Security and
Manageability Engine (Intel® CSME) sub-system. In this initial instantiation the Intel
CSME TRC was calibrated and entered false positive and false negative testing.

Authors:
Daniel Nemiroff

 Sr. Principal Engineer

Intel Corporation

Carlos Tokunaga, Ph.D
 Principal Engineer

Intel Corporation

Fault-Injection Countermeasures,
Deployed at Scale

Information Technology
Cybersecurity

Table of Contents
1 Introduction .1
2 TRC Properites and Behavior . 2
3 TRC Calibration 3
4 Results . 4
5 Conclusion . 6
6 References . 6

White Paper

2

White Paper | Fault-Injection Countermeasures, Deployed at Scale

Data from initial testing indicated we had set the guardbands
too high as we missed some glitches in false negative testing.
Following our methodology for calibration feedback, we
generated a revised calibration recipe, fused new units and
re-ran the testing, successfully tuning the recipe on the 2nd
pass. We performed several TRC configuration validation runs
to extensively and successfully pass the false negative and
false positive tests for each product.

2 TRC Properties and Behavior
As stated in the introduction, the TRC was initially developed
to detect aging in CPU circuitry, but its characteristics allowed
it to be used to detect fault-injection attacks.

The TRC consists of a launching flip-flop (FF), a tunable delay
chain, and a capture FF (as shown below), allowing the TRC
to detect timing violations:

The TRCs delay chain is per-device calibrated during high-
volume manufacturing. It is the calibration of this delay chain
that allows the TRC to determine if the timing of each cycle is
correct and not been tampered with via fault-injection attacks.
Simply said, the delay chain of the TRC has a 1:1 relationship
with the voltage and clock frequency that are used to power
Intel CSME and other devices on the 12th gen Intel Core
processor.

2.1 Example Setup Time Attacks using Clock
and Voltage

The above diagram illustrates how the TRC detects an
undervoltage attack. In the case of a good clock and voltage,
the TRC Capture FF detects that the clock arrives after the
data. However, if the attacker has caused a voltage droop, the
TRC Capture FF will detect that the data arrives after the clock.

• Using this example diagram, in the case of a
successful attack, the attacker will have succeeded in
latching a 0 instead of a 1.

• Practically, if all data lines latched a zero, this would
result in the Intel CSME processor execution a NOP
instruction.

Similar to a voltage droop attack, the TRC will detect an over-
clocking attack as the Capture FF detects that data arrives
after the clock because the clock has been sped up.

• While clock and voltage are the most predictable
attack vectors (and easiest to illustrate), temperature
and EM will cause timing to fail as well, resulting in the
same conditions within the TRC. However, we have
limited data in this area.

2.2 TRC Detecting a FI Attack

The above diagram illustrates how the TRC detects an
undervoltage fault injection (FI) attack. The first rising edge
of the trc_input_clk causes the Launch FF to drive the trc_
data_actual through a delay chain to an XOR gate. The other
input to the XOR gate, is the trc_data_ref signal which has no
delays in it. The second rising edge of the trc_input_clk causes
the Capture FF to latch the output of the XOR gate.

The delay chain is calibrated such that, when no attack is
occurring, the Capture FF will latch a 0b as the output of the
XOR gate. However, if the data lines have been slowed down
due an undervoltage glitch, the XOR gate will output a 1b at
the time the Capture FF latches the error signal.

It should be noted that trc_data_ref will also be slowed down
by a undervoltage glitch, however voltage has more of an
impact to the trc_data_actual signal due to the number of
circuits in the delay chain.

Figure 1. TRC block diagram

Figure 2. Under-voltage glitch detection

Figure 3. (Fast) clock glitch detection

Figure 4. TRC FI attack detection

3

White Paper | Fault-Injection Countermeasures, Deployed at Scale

2.3 TRC vs. Other Solutions
The industry has seen a variety of other fault-injection
detection solutions which primarily consist of analog voltage
and clock and temperature sensors. We chose to utilize the
TRC as it can detect attacks from multiple environmental
conditions. Additionally, the TRC is a digital device, making it
easy to port from one process node to another and it consumes
a smaller die area than building both an analog clock monitor
and analog voltage level detector.

2.4 Integration into Intel CSME

Intel CSME is an embedded subsystem in the Platform
Controller Hub (PCH) of Intel client platforms. It is a standalone
low power Intel processor with dedicated Hardware (HW), the
Root of Trust of the platform that provides an isolated
execution environment protected from host SW running on
main CPU. Intel CSME contains a HW mast ROM that
authenticates and executes Intel CSME FW.

In the Intel 12th gen Intel Core processors, we integrated a TRC
into the System Agent of Intel CSME as shown below:

The Intel CSME TRC monitors the power and clock coming
into Intel CSME, to help protect all portions of Intel CSME from
an attack. When the TRC detects a glitch, it invokes
countermeasures that result in a Intel CSME reset. The rest
of the SoC is not impacted.

The TRC is on the same reset line as all Intel CSME HW, and
if Intel CSME is on, the TRC is monitoring this power. If Intel
CSME is power-gated, the TRC is also power-gated.

3 TRC Calibration
Calibration occurs on every part in HVM (high volume
manufacturing), by converting a voltage glitch (Vglitch) to a
device-unique delay, which is then programmed into TRC
fuses. At reset-exit, Intel CSME pulls TRC fuses before
beginning execution.

3.1 Generating the Calibration Recipe

Determining Vglitch:

Vglitch is determined on a per-product basis, based on the
power delivery integrity and workload guardbands, then
subtracting the guardband from Vnom.

The Need for Slope:

O n the ma nufa c tur ing l ine, to conver t Vglitch to a
programmable delay each part exports the delay that
generates a TRC error at Vnom. The manufacturing tester
then calculates the corresponding delay at Vglitch using a
linear equation, containing a global slope. Slope is determined
using three coordinates, where each coordinate is a voltage/
delay pair. By capturing data from thousands of devices across
voltage, temperature and process corners we are able to
calculate a slope that is used globally for a product.

TRC Calibration FSM (Finite State Machine):

Delays at Vnom, Vmax and Vmin are determined by setting
the voltage, then schmooing the TRC delay until it generates
an error. To simplify the tester code and improve test time, we
implemented an FSM in Intel CSME, allowing HW to automate
data schmooing, such that the HVM tester only needs to
trigger the FSM and record its output.

Gathering Data in HVM to Calculate a Global Slope:

In HVM, we gather data on thousands of DuTs (device under
test) across slow, normal and fast process corners. Class and
sort testers run the TRC FSM at Vmin, Vnom and Vmax at hot
and cold temperatures, capturing these 6-data points for each
DuT. With all these points we are able to calculate a slope that
covers an entire product line.

Calibrating in HVM, Using Slope:

Restating, the recipe takes the delay at Vnom (read by the
production tester) and outputs the delay at Vgiltch, via:
DELAY@Vglitch = DELAY@Vnom – (Vglitch <divided by>
slope/GLOBAL_SLOPE).

• DELAY@Vnom is read by the tester from the TRC FSM.

• Vglitch is a constant for the product.

• GLOBAL_SLOPE is calculated above.

Figure 5. Intel CSME integration

Figure 6. TRC integration into the system agent
of Intel CSME

4

White Paper | Fault-Injection Countermeasures, Deployed at Scale

3.2 False Positive Testing
False positive testing is executed to ensure that no false
positives in the field occur that could result in system stability
issues. As such, the false positive testing exercises a workload
that could result in standard operating voltage droops. See
the Results section for details on the workload run.

Static False Positive Testing:

Following execution of the workload, engineers query the TRC
to determine:

1) If the TRC detected an error.

2) If the TRC is close to triggering an error, done by reading
the margin register in the TRC.

If any parts show either the TRC detecting an error or being
close to margin, recalibration is required as the risk for field-
based false positives would be high.

Dynamic False Positive Testing:

Following completion of static testing, the IP-SV team runs
the same workloads, schmooing the delays of the TRC using
JTAG. This is done to determine at which point voltage droops
that occur during false positive testing trigger a TRC error,
creating an additional mechanism to indicate how much margin
to a false positive a calibrated TRC contains.

3.3 False Negative Testing
False negative testing induces voltage glitches into the
product to determine if the TRC catches them. This is done
by connecting a voltage generator (VC glitcher, manufactured
by Riscure Inc: https://www.riscure.com/product/vc-glitcher)
to the external pins associated with the VNN power rail which
the TRC and the security IP it is protecting are connected.
This requires bypassing the standard motherboard voltage
regulator by reworking the board.

Static False Negative Testing:

After each voltage glitch, the engineers query the TRC to
determine if it detected the glitch as well as how close to an
error the TRC was (by reading the margin register). Missing a
glitch does not necessarily indicate the TRC is poorly
calibrated because SoC circuitry masks glitches before they
can negatively impact the security engines. However, a glitch
that causes the SoC to reset that is not detected, is a failure.

Dynamic False Negative Testing:

Following static testing engineers shmoo the delays of the
TRC to determine at which point the TRC detected a glitch,
that it might have otherwise missed. This information, along
with false positive data is fed back to the architecture team
during the next phase of TRC calibration.

3.4 Analyzing Results
With all data collected from false negative and positive testing,
the architecture team determines if a change needs to be made
to the recipe and the cycle starts again.

3.5 HVM: Lock in Recipe for Production
Once the recipe is high quality, the HVM class team locks in
the recipe into their production class test tapes. From this

point on, all production silicon will be fused with the TRC
enabled and calibrated by using the TRC FSM to read the delay
at Vnom and use the recipe to calculate and program the
Vglitch delay.

4 Results

4.1 False Positive Results
False positive testing was done in a standard post-silicon
environment. In order to analyze the TRC behavior under end-
user conditions, the voltage droop was replicated via a TDP
workload setup. The goal is to maximize the number of disks
and devices connected, together with a script to generate
transactions between them and stress audio core after
windows booted up. It includes 2 x Gen 4.0 NVMe devices, a
Gen 3.0 NVMe device, a SATA disk and 2 x USB 3.2 external
storage units.

Static False Positive Testing:

Over 50 parts were tested at this stage. None of the parts
showed TRC asserting false positive errors, and via margin
readings it was determined that TRC was not close to
triggering an error.

Dynamic False Positive Testing:

From the same set of units, several were manually selected to
go into the Dynamic testing stage. Using the delay override
capabilities of TRC, the delay was increased gradually until
finding the points where the margin indicated that TRC is close
to triggering the error and when it actually detected an error.
When TDP workload is running and PCH is being stressed, the
required delay value to reach the error is usually lower.

4.2 Threat Model
False negative testing on the Intel 12th gen Intel Core
processors PCH encompassed testing multiple parts, by
connecting a voltage generator to the board-level power rail
that feeds the VNN rail. Reference negative voltages were
driven from the generator for varying pull-widths, resulting in
voltages measured at the board-level power rail to be below
vMin. After injecting each glitch, the states of TRC and the
SoC were queried and recorded into one of the following
categories:

1) TRC and SoC state did not change.

2) SoC reset, and the state of the TRC was unknown.

3) SoC state did not change, and the TRC detected an error.

In the graph below, the categorized platform response is
plotted for each attempted glitch on a specific part at the
calibrated delay code, in terms of the glitch’s voltage and
length. The presence of the band of red Xs highlights the TRC’s
detection capability in response to transient voltage glitches.
These are the glitches that did not reset the SoC but were
detected by the TRC. The region of functionality just before
the SoC begins crashing due to glitches is often where a fault
injection attack will focus, as the attacker’s objective is to
change the state of the system in some way without crashing
everything. As such, it is important that this red X band be
present and that the TRC is calibrated to detect voltage
glitches before they actually begin crashing the SoC.

https://www.riscure.com/product/vc-glitcher)

5

White Paper | Fault-Injection Countermeasures, Deployed at Scale

On the part-specific results plotted above, the red X band does
not exist at every glitch length, indicating that the calibrated
delay code for this part could be set too low to be effective,
due to too much guardband in the calibration formula. To
observe the effect of the delay code on the TRC’s detection
capability, the same glitch scan and response categorization
was repeated with various delay codes, starting from the
calibrated delay code and increasing. For a given glitch length,
the width of the red X band was measured and plotted, as
shown below:

As can be seen, increasing the delay from 84 to 92 allowed
the TRC to detect glitches in a larger range for a given glitch
length, where there was no meaningful detection capability
when going to a delay of 96.

4.3 Resulting Change in the Recipe
From these results we inferred the TRCs were calibrated too
conservatively and reduced the guardband, thereby changing
the Vglitch constant. The guardband was adjusted to improve
our false negative coverage.

Figure 7. Platform response to voltage glitch

Figure 8. Glitch scan and response

6

White Paper | Fault-Injection Countermeasures, Deployed at Scale

5 Conclusion
Following the change in recipe, additional DuTs were
manufactured by HVM and sent for false positive and false
negative testing. This 2nd pass of testing proved the change
in recipe allowed the TRC to catch the glitches it previously
missed. Additionally, false positive testing passed, indicating
no parts were close to triggering a false positive. At this point
the team was confident to lock in this final recipe and begin
HVM.

5.1 External Testing at Riscure
To further gain confidence in the TRC and gain additional
insight into FI testing, we contracted with Riscure to evaluate
the TRC. We submitted multiple 12th gen Intel Core processor
parts with the TRC to Riscure for clock, voltage and EMFI
testing. In the end, Riscure was unable to successfully execute
a FI attack against , concluding, “In all cases the successful
glitches were detected by the implemented countermeasures”.

Acknowledgements
Thanks to the following Intel collaborators for their
contributions to their work on the TRC:

• Matias Leonetti

• Swetha Basani

• Parthiv Trivedi

• Sivakumar Ramakrishnan

• Joseph Friel

• Mohamad Faiz Mohd Faridh

• Nanda G Kumar Kalavai

• Masahide Kakeda

• Avinash Varna

• Habib Shawal

• Jim Tschanz

6 References
[1] A. Barenghi, et al., "Low Voltage Fault Attacks on the RSA Cryptosystem," IEEE 2009 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), 2009.

[2] M. Alam, et al., "RAM-Jam: Remote Temperature and Voltage Fault Attack on FPGAs using Memory Collisions," FDTC, 2019

[3] M. ELmohr, et al., "EM Fault Injection on ARM and RISC-V,"International Symposium on Quality Electronic Design (ISQED)", 2020

[4] N. Wiersma, et al., "Safety != Security: On the Resilience of ASIL-D Certified Microcontrollers against Fault Injection Attacks," FDTC, 2017

[5] J. Sakamoto, et al., "How to Code Data Integrity Verification Secure Against Single-Spot-Laser-Induced Instruction Manipulation Attacks," IEEE/ACS 17th International
Conference on Computer Systems and Applications (AICCSA), 2020

[6] M. Werner, et al., "Protecting RISC-V Processors against Physical Attacks," Design, Automation & Test in Europe Conference & Exhibition (DATE), 2019

[7] K. Bowman, et al., " The “Palisades” Resilient Processor for Improved Performance and Energy Efficiency," DTTC, 2010.

[8] K. Bowman, et al., " All-Digital Dynamically Adaptive Clock Distribution for Voltage Droop Tolerance," DTTC 2012.

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.
Intel technologies may require enabled hardware, software or service activation.
No product or component can be absolutely secure.
Your costs and results may vary.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

0822/DCC/MZ/PDF

