
User Flow

HLS IP

IP IPHLS IP

Intel® Quartus® Prime software / Platform Designer

C/C++

Faster Verification Time
The functional debug and verification iteration cycle for RTL simulation is long and
limits iterations per day, resulting in longer development for FPGAs. Fortunately,
verifying the design source in C++ is much faster than simulating in C++, as shown
in Figure 2. Since C++ is the input, this tool accelerates verification time over RTL by
raising the abstraction level for FPGA hardware designs. It also allows you to debug
and optimize on a CPU. The HLS Compiler generates reusable, high-quality code
that meets performance and is within 10%-15% of the area of hand-coded RTL.†

Intel® HLS Compiler

Accelerating FPGA Development with C++
Intel® HLS Compiler is a high-level synthesis (HLS) tool that accelerates FPGA
development while rivaling hand-coded register transfer level (RTL).

Figure 1 shows the Intel HLS Compiler tool flow: it takes in C++ code as input and
generates production-quality RTL that can be instantiated into a larger system as a
custom component using the Intel Quartus® Prime Design Software to program the
FPGA.

The Intel HLS Compiler is designed with hardware developers, algorithm designers,
and intellectual property (IP) library designers in mind. The compiler can also be
used by anyone who wants to target Intel FPGA hardware but would rather code
in C++ than in a traditional RTL, such as Verilog. It is also ideal for those who have
already mastered the backend flow from high-level design to FPGA bitstream.

Figure 1. Intel HLS Compiler Tool Flow

Figure 2. Functional Verification Improvements

Traditional RTL
Design Methodology

Design
Creation

Design
Creation

Functional
Verification

Functional
Verification

RTL
Synthesis

RTL
Synthesis

Place and
Route

Gate Level
Verification

Place and
Route

Gate Level
Verification

HLS Design
Methodology

Product brief

Gen-1027-1.1

Intel HLS Compiler Key Features
The latest release of the Intel HLS Compiler for the Intel
Quartus Prime Design Software provides the following
capabilities that enable hardware programmers to use C++
for accelerating their FPGA development process:

• Supports C++ input – Supports C++ for algorithmic
development, which allows you to transfer existing
programs that use the GCC compiler to the Intel
HLS Compiler for FPGA development. This allows
for seamless verification of a user’s algorithm in the
software world while using a software testbench.

• Automatic RTL verification to C++ – Supports software
testbench verification against the compiler-generated
hardware model (RTL) automatically.

• Design exploration – Supports attributes and
pragmas that enable you to quickly explore hardware
architectures including interfaces, parallelism, memories,
datapaths, and loops.

• System of tasks – Allows for expression of thread-level
parallelism within a HLS component. Common use cases
include: executing multiple loops in parallel, sharing an
expensive compute block, or designing a HLS system
hierarchically so starting with the small building blocks,
stitching them together, and connecting them with
streams.

• Variable precision types - Supports a software compiler
use model and industry standards, including ac_int and
ac_fixed data types

• Floating-point support – Provides native support for
floating-point and fixed-point variables and operators.
Integrated hardened floating-point multiple-add units
in Intel FPGAs. Fixed-point support is also useful for its
ability to both cover the legacy designs and enable the
fastest, smallest designs.

• Reporting – Generates interactive analysis reports
after converting, which gives you a birds-eye view of
the design. Reports include cross-probing of the source
code that allows easy micro-architecture optimizations,
such as loop-unrolling and variable dependency fixing.

† Tests measure performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of
information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.

© Intel Corporation. Intel, the Intel logo, the Intel Inside mark and logo, the Intel. Experience What’s Inside mark and logo, Altera, Arria, Cyclone, Enpirion, Intel Atom, Intel Core, Intel Xeon, MAX,
Nios, Quartus and Stratix are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other marks and brands may be claimed as the property of others.

 Please Recycle

There are several quality of result (QoR) reports that allow
for better insight into what hardware the compiler has
generated. You can take advantage of new controls, iterate
designs, and make progress on QoR.

• Block viewer report – Shows clusters and their
surrounding logic.

• Cluster viewer – Shows fine-grained details within
clusters, including instructions and dependences
of the instructions for the generated data path in a
graphical manner, which enables you to quickly iterate
optimizations to your design and see the changes.

• fMAX/II reports – Lists key performance metrics or
indicators on all basic blocks. It is intended to help
expert users identify fMAX bottlenecks in their design, set
proper fMAX targets, and estimate execution latency. The
fMAX/II report for the Intel HLS Compiler also provides
guidance for users who use the loop pragmas.

2

